Forklift Starters and Alternators

Forklift Alternators and Starters - The starter motor nowadays is typically either a series-parallel wound direct current electric motor which has a starter solenoid, which is similar to a relay mounted on it, or it can be a permanent-magnet composition. Once current from the starting battery is applied to the solenoid, mainly via a key-operated switch, the solenoid engages a lever which pushes out the drive pinion which is situated on the driveshaft and meshes the pinion utilizing the starter ring gear that is seen on the flywheel of the engine.

When the starter motor begins to turn, the solenoid closes the high-current contacts. As soon as the engine has started, the solenoid has a key operated switch which opens the spring assembly so as to pull the pinion gear away from the ring gear. This action causes the starter motor to stop. The starter's pinion is clutched to its driveshaft by means of an overrunning clutch. This allows the pinion to transmit drive in just a single direction. Drive is transmitted in this way through the pinion to the flywheel ring gear. The pinion continuous to be engaged, for instance in view of the fact that the driver did not release the key once the engine starts or if the solenoid remains engaged since there is a short. This actually causes the pinion to spin separately of its driveshaft.

The actions discussed above would prevent the engine from driving the starter. This important step prevents the starter from spinning very fast that it will fly apart. Unless adjustments were done, the sprag clutch arrangement would preclude using the starter as a generator if it was made use of in the hybrid scheme mentioned earlier. Normally an average starter motor is intended for intermittent use that will preclude it being utilized as a generator.

Therefore, the electrical parts are intended to be able to work for around under 30 seconds to avoid overheating. The overheating results from very slow dissipation of heat due to ohmic losses. The electrical components are designed to save weight and cost. This is the reason most owner's handbooks meant for automobiles recommend the driver to pause for at least 10 seconds after every ten or fifteen seconds of cranking the engine, when trying to start an engine which does not turn over right away.

The overrunning-clutch pinion was launched onto the marked in the early 1960's. Previous to the 1960's, a Bendix drive was utilized. This particular drive system operates on a helically cut driveshaft which consists of a starter drive pinion placed on it. As soon as the starter motor begins spinning, the inertia of the drive pinion assembly allows it to ride forward on the helix, thus engaging with the ring gear. When the engine starts, the backdrive caused from the ring gear allows the pinion to exceed the rotating speed of the starter. At this moment, the drive pinion is forced back down the helical shaft and therefore out of mesh with the ring gear.

The development of Bendix drive was developed during the 1930's with the overrunning-clutch design called the Bendix Folo-Thru drive, made and launched during the 1960s. The Folo-Thru drive has a latching mechanism along with a set of flyweights within the body of the drive unit. This was a lot better because the average Bendix drive used to be able to disengage from the ring as soon as the engine fired, even though it did not stay functioning.

As soon as the starter motor is engaged and begins turning, the drive unit is forced forward on the helical shaft by inertia. It then becomes latched into the engaged position. Once the drive unit is spun at a speed higher than what is achieved by the starter motor itself, like for example it is backdriven by the running engine, and after that the flyweights pull outward in a radial manner. This releases the latch and enables the overdriven drive unit to become spun out of engagement, therefore unwanted starter disengagement could be avoided before a successful engine start.